Study of Proton-Boron Fusion Burn Driven by Short Pulse Lasers
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The p-B11 advanced fusion fuel is an attractive alternative to D-T fusion in Reactions Range Slowing down time @ 5 Hz rep rate, yield/pulse = 280 MJ; Laser energy in = 2 MJ/pulse * DT ignition @ ~ 5 keV; p-B11 has same reactivity @ "~45 keV
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that its fuels are stable (non-radioactive) and its fusion products are [(Eo) = J;" o(B) (E) E R(Eo) = J, (&) dE t(Eo) = J (V(E) &) E Target “Gain” = Fusion Power OUT / Laser Power IN  P-B11 less reactive, but alphas have same range & deposit 2.5x E/fusion
aneutronic charged particles, enabling the possibility of higher efficiency

* Ideal ignition balances fusion production & radiation loss rates
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direct energy conversion. Since 2005, a series of “pitcher-catcher” .

For 1.4 barn peak cross section, mfp to proton fusion in B =6.105 cm
experiments in Russia, France, the Czech Republic, Japan, and the US have

1400 MW S e Can hi-Z radiation-trapping layers enable p-B11 ignition & gain?
{ } )  Clocricly Ceneraler DT fast ignition @ >= 100 g/cc — what is required for FI* with p-B11?

e 1 MeV proton range = 12 microns in 1.8 ps - ~ 2.e-4 fusion probability

shown substantial alpha yields from the p-B11 reaction driven by short . o a

pulse lasers. Our analysis of these experiments shows that the magnitude * Peak cross section @ 660 keV — narrow resonance, negligible < 100 keV « What pris required for p-B11 & how does burnup fraction scale with pr?
of the alpha particle yields is consistent with their generation via beam * Calculated thick target yield for 1 MeV in BN @ STP = 6.56e-5 N . 280 MJ/pulse = 3.525 mg of 11B burned/pulse

fu.smn reactions !OV laser accelerated protons slowing dOW“. :.md reacting * Proton range can be higher in hot or degenerate plasmas, increasing o el RS T — G el el 6 €T G
with boron nuclei. Further, when the boron plasmas are sufficiently hot to fusion/elastic scattering ratio 10 MW 140 MW o ) ) )

decrease the proton stopping power, the fusion yields have been increased f Rec]fﬁfﬁn;ﬁf"wer] * For 10% burnup fraction — solid sphere radius ~ 1.5 mm

by up to an order of magnitude. However, beam fusion reactions do not Start Here

scale to net gain and energy production. A recent paper has revisited the Laser Required for 100 MWe Power Plant _
fusion reactivity of a pB11 plasma in a magnetic containment device based 300 200

on hew Cross sec.tion measurements a.nd an accounting of kinetic eff.ects p—uB cross section w TUNL data (Sikora-Wells) et « Thermonuclear burn occurs @ high energy tail — how to maximize?

and found a net increase of ~¥30%, which makes the necessary conditions . Can CPA broton fusion enerev & collisions catalvze orobaeating burn?
for achieving ignition possible to be satisfied. We will present the initial 200 - _ . . n f.;y . _ pHa IR g '
results of our study of proton-boron fusion burn driven by short pulse lasers 101 - * "Lift” high energy proton tail via up-scattering & nuclear reactions

using these new cross sections, as well as a hybrid kinetic-fluid approach to +& w150 1 * Need Fokker-Planck model for beam and thermonuclear species
calculating the implosion, burn, and expansion physics of an IFE target. We \ é 100 . * Include relativistic effects, ala Putvinsi, et al.

will quantify the possibility of ignition and burn in fast ignition-like 1073 - ? i UPCOMING SIMULATIONS:

configurations, accounting for the power balance between heating, fusion, D - . .

E i g > g — A HELIOS-CR has pB-11 reactivity & beam fusion module to study burn space
charged particle deposition, Bremsstrahlung, thermal conduction, and e 10~ - _ . . _ o
hydrodynamic expansion via isochoric models and rad-hydro simulations. 5 & 0 Chicago (Voss) will be used to study multi-species burn kinetics
We will use models that include the effects of density and temperature on & o
the interaction of charged particles in the plasma, including both slowing 10-7 - o e _
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down and up scattering terms. We will also consider designs that include o ~100 | | | | | | | 0.00
radiation trapping to reduce losses. 102 ] e o . - Targiotogam S ok Sk oW * Nuclear diagnostics can help provide insights into distributions
° * Nuclear diagnostics augment particle diagnostics (CR-39, TP, etc)
L . L e * Future experiments to clarify physics and validate models include:
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* CPA intensities create fast electrons & ions — hybrid kinetic-fluid model : : . L show the required laser power to generate 100 MWe for conversion * Expt @ Gekko/LFEX (cylindrical geometry with B-field)
required (blue) ~ recent Sikora-Weller measurement gives higher cross section in efficiency of 0.4 and 0.8 (direct conversion of charged particles). We see
E AT R R ion (isochoric) can boost yield the MeV regime, where the protons from USPL accelerations start o Gai:s o= 100 are ;equired S powe% prgduction ' * Experiment at Omega (spherical geometry / implosion)
* Reactivity scales with density — compression (isochoric) can boost yie = . o . :
E v - v * Higher cross section appears to explains higher yields, not avalanche * Additional/complementary experiments:

 Managing the energetic proton spectrum is a key (Fokker-Planck)

* Experiments at PALS

* Measuring EOS of boron / boron nitride
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